Conditional maximum-entropy method for selecting prior distributions in Bayesian statistics

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Entropy Beyond Selecting Probability Distributions

Traditionally, the Maximum Entropy technique is used to select a probability distribution in situations when several different probability distributions are consistent with our knowledge. In this paper, we show that this technique can be extended beyond selecting probability distributions, to explain facts, numerical values, and even types of functional dependence. 1 How Maximum Entropy Techniq...

متن کامل

The Maximum Entropy Method for Lifetime Distributions

An approach to produce a model for the data generating distribution is the well-known maximum entropy method. In this approach, the partial knowledge about the data generating distribution is formulated in terms of a set of information constraints, usually moment constraints, and the inference is based on the model that maximizes Shannon’s entropy under these constraints. In this paper we inves...

متن کامل

Shannon entropy in generalized order statistics from Pareto-type distributions

In this paper, we derive the exact analytical expressions for the Shannon entropy of generalized orderstatistics from Pareto-type and related distributions.

متن کامل

Determination of Maximum Bayesian Entropy Probability Distribution

In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.

متن کامل

Sequence Modeling with Mixtures of Conditional Maximum Entropy Distributions

We present a novel approach to modeling sequences using mixtures of conditional maximum entropy distributions. Our method generalizes the mixture of first-order Markov models by including the “long-term” dependencies in model components. The “long-term” dependencies are represented by the frequently used in the natural language processing (NLP) domain probabilistic triggers or rules (such as “A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: EPL (Europhysics Letters)

سال: 2014

ISSN: 0295-5075,1286-4854

DOI: 10.1209/0295-5075/108/40008